ArrayUDF: User-Defined Scientific Data Analysis on Arrays

Bin Dong', Kesheng Wu', Surendra Byna, Jialin Liu®, Weijie Zhao¥, Florin Rusu'*

TLawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720
'TUniversity of California, Merced, 5200 Lake Rd, Merced, CA 95343
{DBin,KWu,SByna,Jalnliu}@Ibl.gov,{wzhao23,frusu}@ucmerced.edu

ABSTRACT

User-Defined Functions (UDF) allow application programmers to
specify analysis operations on data, while leaving the data manage-
ment tasks to the system. This general approach enables numerous
custom analysis functions and is at the heart of the modern Big
Data systems. Even though the UDF mechanism can theoretically
support arbitrary operations, a wide variety of common operations —
such as computing the moving average of a time series, the vorticity
of a fluid flow, etc., — are hard to express and slow to execute. Since
these operations are traditionally performed on multi-dimensional
arrays, we propose to extend the expressiveness of structural local-
ity for supporting UDF operations on arrays. We further propose an
in situ UDF mechanism, called ArrayUDF, to implement the struc-
tural locality. ArrayUDF allows users to define computations on
adjacent array cells without the use of join operations and executes
the UDF directly on arrays stored in data files without requiring
to load their content into a data management system. Additionally,
we present a thorough theoretical analysis of the data access cost
to exploit the structural locality, which enables ArrayUDF to auto-
matically select the best array partitioning strategy for a given UDF
operation. In a series of performance evaluations on large scientific
datasets, we have observed that — using the generic UDF interface -
ArrayUDF consistently outperforms Spark, SciDB, and RasDaMan.

KEYWORDS

ArrayUDF; User-Defined Data Analysis; Array Structural Locality;
SciDB; MapReduce; Spark

1 INTRODUCTION

As technology advancements in large-scale scientific experiments,
observations, and simulations are generating unprecedented amounts
of data, scientists are in need of novel techniques to process the
data. Scientific datasets typically contain multi-dimensional arrays
and are stored as files in shared disk-based storage systems [36].
Analysis of these large datasets has to be conducted directly on the

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only. Permission to make digital or hard copies for
personal or classroom use is granted. Copies must bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
HPDC ’17, June 26-30, 2017, Washington, DC, USA

© 2017 ACM. 978-1-4503-4699-3/17/06...$15.00

DOI: http://dx.doi.org/10.1145/3078597.3078599

raw data files, in an in situ manner !, because loading the data into
database systems that typically assume shared-nothing architecture
is a very expensive and cumbersome operation. Furthermore, anal-
ysis operations on datasets are different from one run to another.
Therefore, it is necessary to allow application programmers to cus-
tomize their analysis operations through the User-Defined Function
(UDF) mechanism. To provide such an extensible analysis capability,
we propose a novel UDF abstraction for multi-dimensional arrays
and present an in situ system that executes UDF operations over
large datasets dramatically faster than the state-of-the-art data
management systems.

UDFs have been explored extensively in data management liter-
ature [4, 33] and are widely implemented in database servers [13,
30, 33, 44], recent parallel data processing systems [15, 18, 26, 28],
as well as specialized scientific data processing systems [5, 6, 9, 17].
The assumption behind UDFs is that most data analysis operations
and their input data have a relatively simple relationship. Typically,
the relationship is that a single operation is applied to each ele-
ment of a dataset, e.g., a tuple of a relational table or a cell of an
array. In these cases, a user only needs to specify the operation
on a single data element, while the underlying system automati-
cally executes the operation over all the elements. To the user, the
operation on a single data element is the application logic, while
the task to manage the dataset is a support function. However, this
support function is often much more complex, especially for large
datasets that tend to be processed in parallel. The UDF mechanism
allows users to concentrate on the application logic and leave the
data management task to the system, which significantly improves
productivity of the users.

A critical limitation of most existing UDF implementations is
that they typically allow users to define an operation only on a
single element. However, most real-world data analysis tasks, such
as computing the moving average of a time series or the vorticity
of a flow field [14] (see detailed examples in Section §2), require the
values of not just a single element, but also many of its neighbors.
This dependency on adjacent elements is referred as structural
locality in the literature [27]. To alleviate this limitation and to
support a flexible UDF mechanism, some DBMS systems allow
UDFs on an entire data table [30, 42, 44], while MapReduce systems
[18] allow users to define an operation on a set of related elements
in the reduce stage. However, this flexibility comes at the expense
of tedious aggregation that is required to build the input of UDF
properly. Moreover, since a data element is required by multiple
neighbors in real applications, the data management system often
replicates each element multiple times during execution, which

I The ability to process data directly in their native file formats has been referred to as
“in situ processing” in data management literature [3, 8].

degrades the performance significantly. Furthermore, the reduction
operations are performed uniformly on all neighboring elements
involved, while real applications typically need to perform different
operations on different neighboring elements. In short, there are
many real-world operations that are not well-supported by the
existing UDF mechanisms, i.e., these operations are hard to express
and slow to execute.

In this paper, we present the design and implementation of
ArrayUDF, a novel in situ UDF abstraction optimized for multi-
dimensional arrays. ArrayUDF supports generalized structural lo-
cality by allowing users to define operations not only on the local
value of an array cell, but also on the values of its neighbors. Mean-
while, using ArrayUDF to define an operation for a given cell, users
can define a specific operation for each neighbor of this cell in the
UDF. ArrayUDF automatically identifies the optimal array chunking
strategy that guarantees the efficient execution of each operation.
In summary, the contributions of this paper include:

o Introduction of ArrayUDF, the first UDF mechanism for multi-
dimensional arrays with a generalized structural locality support.
By providing a novel operator to express the relative position of
a neighbor, ArrayUDF allows users to define complex analysis
operations directly on arrays. Compared with the computing
model of MapReduce, ArrayUDF uses a single step to complete
the task for both Map and Reduce operations.

e Implementation of ArrayUDF and its processing system using the
SDS framework [19], a database-like system for high-performance
computing (HPC). ArrayUDF executes in an in situ manner [3, 8]
for efficiency. ArrayUDF works directly on raw scientific file
formats, e.g., HDF5 [39], where the files are stored in parallel file
systems.

e Algorithms to dynamically identify the optimal chunking strat-
egy and build a “ghost zone” for a given UDF based on the data
access cost. Compared with the chunking strategies for shared-
nothing array databases, these unique features of ArrayUDF
enable it to work efficiently on dynamically-scheduled resources
in an HPC environment as well as on the large scientific datasets
stored on shared-storage systems as files.

e An analytical performance model for providing theoretical sup-
port to justify the chunking strategies of ArrayUDF and also for
tuning ArrayUDF to different array organizations on disk.

e Evaluation of ArrayUDF using both synthetic and real scientific
datasets on a Cray XC30 supercomputer and also a commod-
ity Linux server. We have compared ArrayUDF with SciDB [9]
and RasDaMan [6] - specialized systems for multi-dimensional
array processing — and Spark, the state-of-the-art MapReduce
system that supports generic UDFs. Our evaluations show that
ArrayUDF is considerably faster than existing alternatives. For
instance, using the generic UDF interface, ArrayUDF is up to 2070
times faster than Spark to complete a real-world data analysis.

In Section §2, we present several motivating examples from real
scientific applications. In Section §3, we introduce ArrayUDF and its
design and implementation. We present performance evaluation of
ArrayUDF in Section §4. In Section §5, we discuss related research
efforts. We conclude the paper in Section §6.

2 BACKGROUND AND MOTIVATION

Here we introduce several real-word applications that motivate this
research. Our work can be the building blocks for advanced data
mining algorithms [32] and systems, e.g., TensorFlow[2].

2.1 Motivating examples

Example 1: Moving average based smoothing for time series.
A variety of applications produce 1D time series data. Examples
include collection of temperature periodically on a flux tower in
climate observations and daily stock prices in finance industry.
These time series datasets usually contain two parts: a meaningful
pattern (e.g, seasonal trend) and a superimposed noise with limited
scientific meaning. Moving average based smoothing is widely
used to extract the meaningful patterns. Specifically, at a time ¢,
moving average based smoothing has to determine the average of
observed values that are close to this particular time, as shown in
the following equation:

V! = Wi g Vi_gt+oooAwe g Vi 4w Vit oA we iy Vi (1)
t k+m+1 ’

where V; is the observed value, w; the weight and V, the smoothed
value. k and m are the steps before and after ¢.

Example 2: Vorticity computation. S3D is a high-fidelity di-
rect numerical simulation (DNS) designed to capture key turbulence-
chemistry interactions in a combustion engine [14]. A key variable
related to the turbulent motion is vorticity. It defines the local spin-
ning motion around a given location. To simplify the description,
we give the z component of the vorticity at a point (i, j):

.. _ Ou Ov ., Wij+1—Uij-1 Vi+1,j~Vi-1,j
éVls] =ox T dy ~ 28x + 2Ay ’ ()

where u and v are the flow velocity (i.e., 2D arrays) on the x and
y axes, respectively, and Ax and Ay are the constant differences.
Note four neighbors per cell are required in this computation.

Example 3: Peak detection. Mass-spectrometry imaging (MSI)
is an essential technology required by biological sciences to un-
derstand metabolism [34]. In MSI, the mass-to-charge ratio (m/z)
is a variable of interest which is usually a 3D array for a single
object (e.g., brain tissue sample). A key data analysis task in MSI
is to find peaks of m/z via calculating the gradient of each point,
typically through the Laplacian operator [31]. The Laplacian for a
given point (i, j, k) is defined as:

Gijk = 6 X Vi j k= (Vi jke+1 + Vi j k-1 + Vi, jr1,k

®)
T 1,k T Vit)k T Vict,),k)s
where v is the m/z value and g denotes the gradient value. Note
that seven values of v are needed for each value of g.

Example 4: Trilinear interpolation. Plasma physics simula-
tions, such as VPIC, are used to study magnetic reconnection [11].
During a simulation, magnetic field values are computed at mesh
points. However, data analysis requires to find the magnetic field
at the location of each particle. Generally, the magnetic field at the
location of a particle is interpolated from the nearest eight mesh
points in a 3D mesh. For a particle at (x, y, z), its magnetic value
Ux,y,z can be computed with the trilinear interpolation equation:

Ux,y,z = Vg j kN + 04 j ks 1N+ 05 g kN2 + 0 i1 k1 N3+

Oig1,j,kNa + 0341, k415 + Vg1 ja1,kNo + Vigt, jrt, k+1 N7

where Nj (i € {0,...,7}) are the distances to each corner. Thus, we

can see that the trilinear interpolation for a single particle requires

access to eight adjacent magnetic values.
Key observations from the examples above: .

e The computation follows a stencil [7, 29] pattern. In general, a
new array B is computed from an existing array A, where the
value of B at location (i, j, k) is determined not only by A(i, j, k),
but also by its neighbors. This is called structural locality in a
previous work [27].

o The neighbors of A(i, j, k) do not go through the same operation.
Previous work — such as MapReduce [18] and GLADE [15] - gen-
erally assume that a uniform reduction or aggregation operation
is sufficient.

e There is a variety of analysis operations for different applications.
The best option for implementing all of them is to follow the UDF
approach to support the common data management operations,
while allowing users to define custom operations on data.

2.2 Research challenges

SciDB, RasDaMan, and AML [27] implement the “window” opera-

tor, which supports some form of structural locality. However, the

operations on the values within a window are generally a reduction
operation, while the above examples show a variety of operations.

Furthermore, the “window” typically has to be a rectangular sub-

domain, e.g., a 2 X 2 square, while the above examples contain

more complex definitions of neighborhood. Additional flexibility
is needed in specifying both the operations and the neighborhood.

While UDFs provide a general framework to express custom anal-

ysis operations, they have to address the following challenges in

order to be applicable to structural operations defined over arrays:

e How to define neighborhood cells involved in a UDF operation?
These definitions have to be compact, easy to construct, and - at
the same time - efficient to evaluate.

e How to develop UDFs that support in situ array data analysis? As
most scientific datasets are stored in file formats such as HDF5
and netCDF [36], a new UDF mechanism has to work directly
on these files without loading the data into a separate DBMS.

e How to effectively partition the data and computation on parallel
computing systems? As each array cell is needed at different com-
putation steps, the data partition may require overlapping. Main-
taining load-balance and reducing overlap is critical to achieve
good overall performance.

3 ArrayUDF APPROACH

To address the identified challenges, we propose a UDF system
named ArrayUDF. With ArrayUDF, we extend the expressiveness
of structural locality to allow users to easily define operations on
adjacent cells of an array and to perform data management tasks
efficiently for supporting these user-defined operations. ArrayUDF
is also capable of identifying the minimum portion of an array ac-
cessed on each process (e.g., CPU core) and operate on that portion
of the array data stored in files, without loading the entire array
into the system. This optimization is possible because the array
syntax used by ArrayUDF to describe the operations provide a
clear mechanism to identify the relevant cells and the optimal data
partition can be determined analytically.

ArrayUDF computational model. For comparison, we first
introduce the computational models of relational databases and
MapReduce systems. We use f to denote a user-defined function.

For relational tables T and T’, the generic UDF model is:

t" < f(t) ®)
where f is applied to each tuple t € T and ¢’ represents the tuple in
the output table T”. There is a one-to-one mapping between input
and output tuples. Aggregate UDFs allow for more input tuples to
determine an output tuple. However, it is done by grouping on the
values of some attributes, i.e., the SQL GROUP-BY operator.

In the MapReduce paradigm, the input of a UDF is a (key, value)
pair, or (k,v) for short. MapReduce has two components - Map
and Reduce — which can be formally expressed as:

Map :{(ki,vi) lie [l,m]} - fl((k,v))
Reduce :{(k’i,u’i) lie [1,p]} <—f2({(k', o) | i€ [1,n]})

where m, n, p € N, N is the natural number set, fi is an enhanced
UDF that implements a one-to-many mapping from the input pair
to an intermediate set of key-value pairs and f; is a SQL GROUP-BY
AGGREGATE identical to the relational aggregate UDF. Key k’ is
the grouping parameter in f3. Value v is generated by f, through
uniformly applying a single operator — such as SUM - to each v;.

The computational model of the ArrayUDF is defined on two
d-dimensional arrays, A and A’ (d € N). The cell ¢’ at coordinate
(i1, 2, .. .,iq) in A’ is computed by a stencil S of the cell ¢ at the
same coordinate in A. Theoretically, the stencil S is a set of array
cells which have structural locality. Specifically, for the cell ¢ at co-
ordinate (i, i2,...,ig),S = {ci1+51,i2+52,..., id+5dlvj S [1,(1'],5]' €
[Lj,R;]}, where L; € [-ij,0], Rj € [0,Nj — ij], and the Nj is the
size of the jth dimension. Obviously, the 61, 82, . . ., 84 are relative
distances from the cell c. For simplicity, each cell in S is expressed
as 8§,.5,,...,84> Which is ¢; 45, i, 45,, ..., i4+5,+ With these notations,
the formal computational model of ArrayUDF is:

- <—f({s5b”_,5d V)€ [1.d].6) € [Lj,Rj]}).)

Distinct from the UDF models of relational databases and of MapRe-
duce, in the model of ArrayUDF, the function f has a stencil S as
input. A stencil S allows ArrayUDF to express any neighborhood
shape implicitly via relative distance. This is also different from
AML [27], where a shape parameter is required to express neighbor
cells. Meanwhile, users can specify different operators on different
cells of S within the UDF. This distinguishes ArrayUDF from most
existing aggregate UDFs [15], where a single aggregate operator is
applied onto all values. In the relational model, this functionality
requires a chain of self-joins having cardinality equal to the number
of cells in the stencil. In MapReduce, the self-joins are substituted
by the one-to-many replications in the Map stage. In general, when
the size of S is equal to one, ArrayUDF is identical to the relational
and Map UDFs. Otherwise, ArrayUDF is similar to relational aggre-
gates and the Reduce function. In summary, ArrayUDF eliminates
the shape operators for computing a stencil (S) and allows a more
concise definition of UDFs for arrays.

System overview. Towards implementing the computational
model of ArrayUDF, we introduce its key software components:

(6)

e ARRAY is a data structure that encapsulates the multi-dimensional
array stored in files. This is the primary object a user interacts
with. ARRAY implements the function Apply to execute the UDF
defined by the user. On a parallel computing system, each process
creates its own instance of the ARRAY object with the same argu-
ments, and invokes the same UDF with the function Apply. More-
over, ARRAY has functions to partition the multi-dimensional
array automatically, to build the necessary overlapping regions
(known as ghost zones), and to divide the computation among
the processes. This partitioning method is guided by a theoreti-
cal analysis to be discussed in § 3.3. More details on ARRAY are
reported in Section § 3.2.

e The data structure STENCIL represents an array cell and its
neighborhood cells in relative coordinates. As defined earlier,
STENCIL is a relative coordinate-based notation that allows users
to describe the operations to be performed on each neighbor
separately. Previously used notations for “shape” and “window”
demand all neighbors to be described in a collective form, which
limits aggregation operations used in scientific data analysis. In
contrast, our relative coordinate-based notation is more flexible.
Users define their UDFs with these STENcILS. In C++ syntax, this
relative coordinate is expressed using the parenthesis operator
of the STENCIL object. More details about STENCIL are in § 3.1.
ArrayUDF is currently implemented as part of the Scientific

Data Services (SDS) framework [19], which provides the basic I/O
drivers for reading and writing the data from parallel file systems.
We implement ARRAY and STENCIL as C++ classes. We show an
example of using ArrayUDF in Fig. 1, where “MyAvg” is a UDF
to compute the average value using four adjacent cells. “MyAvg”
is executed by calling the Apply function of an ARRAY instance
within the main function. The template feature is used to support
different data types, e.g., float and double.

3.1 StENcIL design considerations

The STENCIL data structure represents an array cell and its neigh-
bors needed for a single invocation of the UDF. STENCIL plays a
role similar to a tuple in a database or a key-value pair concept,
working as the input to the UDF. It is more flexible than existing
concepts such as “window” and “shape” in two ways. A STENCIL
can be used to define more complex neighborhoods than “window”
and “shape” and it allows the user to specify a different operation
on each of the neighboring cells. This flexibility allows a much
wider variety of analysis operations to be defined.

Since modern CPUs can carry out many arithmetic operations
quickly, we anticipate that the complexity in arithmetic operations
is less dominant in the overall performance of a UDF than the cost of
data accesses. As with “window” and “shape,” we expect operations
defined on our relatively compact stencils to access a small number
of neighbors and, therefore, can be carried out efficiently, while
operations involving a large number of neighbors, no matter in
the form of a “window”, a “shape”, or a “stencil”, require more data
accesses and take a longer time to complete. In short, we expect
the flexibility to address individual neighboring cells in a UDF not
to impose a significant cost on its own.

//A UDF on a stencil containing four neighborhood cells
float MyAvg(STENcIL<float> &s){
return (s(1,0)+s(—=1,0)+s(0,—1)+s(0,1))/4;

int main (){
vector <int> cs(2)={2,2};//Chunk size
vector <int> gs(2)={1,1};//Ghost zone size
ARrAY<float> A("d2d.h5" ,cs,gs);
ARRrRAY<float> B("d2davg.h5");
//Run UDF code using Apply function
//Store the result in B
A—>Apply (MyAvg, B);

//0ther operations on B or A

}

Figure 1: An example using ArrayUDF to compute user-
defined average, i.e., “MyAvg”, on a 2D array A, stored in a
HDF5 file, named “d2d.h5”. The results are stored in array B,
which has the same dimensions as that of A and is stored in
file “d2davg.h5”. Given different UDF operators, B can have
different dimensions from A. The user-specified chunk size
(cs) and ghost zone size (0s) are used to support parallel pro-
cessing. Both cs and os are optional and can be determined
by ArrayUDF automatically.

To understand the relative coordinates used in the definition
of a STENCIL, it is useful to visualize the coordinates of a multi-
dimensional array to be a set of mesh points in space and each array
to be an attribute of a mesh point. For example, one set of attributes
might be their location in space, (e.g., x, y, and z dimensions), and
another set might be temperature, pressure, and concentrations
of some chemical species. The analysis examples given in earlier
sections follow this basic schema and a typical analysis function
computes B(i, j, ...) from A(i, j, ...) and its neighbors. Furthermore,
the neighbors are of a fixed combination of offsets around A(i, j, ...).
In applied math, the pattern formed by these offsets (positions
relative to a center (i, j, ...)) is known as a “stencil”. ArrayUDF uses
a syntax implemented as the parenthesis operator of C++ to allow
each cell in the stencil to be explicitly named. For example, in a 2D
case, 5(0, 0) refers to the “center” of the stencil A(i, j), and S(1, 0)
refers to the neighbor A(i + 1,).

The use of relative coordinates in the UDF allows the users to
define the operations without mentioning the coordinates (i, j, ...).
When the function is actually evaluated, we need to convert these
relative coordinates back to the absolute coordinates in order to
access the specific cells. In this context, the use of the relative
coordinates also allows each execution thread to work on its own
portion of the global mesh as illustrated in § 3.2 and Fig. 6.

3.2 ARrray design considerations

The ARRAY class is a high-level abstraction and representation for
multi-dimensional arrays that contains a group of functions for
run-time tasks. Users employ ARRAY to represent an array stored
either in memory as std::array or on disk as an HDF5 dataset. For
this work, the key function of ARRAY is Apply, which executes
a UDF. Behind this function, we are able to implement a number
of data management techniques for parallelizing the execution of
the UDF automatically through partitioning the global mesh into
suitable sub-domains and overlapping the sub-domains through
ghost zones.

3.2.1 Parallel processing with dynamic chunking. A typical ap-
proach for parallel processing of a large problem is to divide the
problem into smaller partitions or chunks. Following this general
practice of data management systems, we also divide the evaluation
of the UDF by partitioning data. We observe that an invocation of
UDF requires access to values near (i, j, ...). Therefore, it is essen-
tial for us to keep the neighbors close to each other as much as
possible. This basic requirement is similar to many parallel com-
puting applications [25], which allows us to borrow a number of
techniques for designing an efficient data partitioning algorithm.
Our overall approach can be viewed as partitioning (chunking) the
mesh defined by the multi-dimensional coordinates into chunks,
and then map each chunk to a parallel processing element (PE). We
assume that each chunk is small enough to fit into the available
memory on a PE. A processing element is responsible for producing
the output array belonging to the chunk. To complete this task, it
not only needs to access the corresponding chunk of the input data
array, but also some extra portion of the array, which we call ghost
zone (as illustrated in Fig. 2). Since ArrayUDF is designed to process
data directly on raw data files, there is no data pre-processing step
(e.g., loading data into the system) for it to figure out an efficient
chunking strategy in advance. We need to perform all the chunking
related decisions (e.g., chunk size) dynamically. Moreover, for a
given chunk, it is necessary to consider its logical view (i.e., shape)
and its physical view (i.e., data layout on storage) as they affect the
performance of reading the data.

Chunk
cid=0
cid=1
chunk size = 4 XX
ghost zone size = 1 s ;Ghost Zone
cid=2 4 cid=3

Figure 2: Example of chunks and ghost zones in a 2D array.

Chunk management overview. In order to maintain load bal-
ance among processing elements, ArrayUDF attempts to keep the
size and the shape of chunks similar. An example of chunking in
ArrayUDF is shown in Fig. 2, where four chunks are created. Each
chunk has a dynamically assigned ID (i.e., cid in the example). The
ID is calculated using the row-major ordering from the coordinates
of chunks, which allows ArrayUDF to identify a chunk quickly.

FUNCTION ArrayUDFChunk(M, P, (Ny, . .
M: the available memory size per process;
P: the total number of processes;

(No, - - ., Ng): the size of an array for d dimension
0. S =min (M, ([T%, N;)/P)
1. if general chunking then

- Nd))

2. Find an integer w that minimizes | S — w |
3. CI=W,C0=W,...,.Cq=W

4. if layout-aware chunking then

5. forie(d,d-1,...,2)do

6. ci =S%N;; S =S/N;

7. Cc1 = S

8. return (c1, €2, . . ., Cq)

Figure 3: The method for selecting chunking parameters.

Optimal chunking strategy selection. A key challenge to sup-
port dynamic chunking is to decide the optimal chunking param-
eters, including chunk size, chunk shape, and chunk layout. The
chunk size is the number of cells within a chunk, the shape is its
logical view, and the layout is its physical data layout on disk. To
address this challenge, ArrayUDF provides two chunking strategies:
a general chunking and a layout-aware chunking, as shown in
the pseudocode in Fig. 3. We describe the theoretical reasoning for
these strategies in § 3.3. In the following, we describe the high-level
idea and concrete applications.

e To find an optimal and general chunking, we assume that
each array cell is accessed separately. Such an assumption guar-
antees that the chunk layout has no impact on the performance
of accessing a chunk. In other words, we consider it as an average
case for different chunk layouts. Users can choose this chunking
strategy when the layout of the array on disk is unknown. As
shown in line 0 in Fig. 3, the chunk size in this strategy is set to
be as large as possible to fit in the memory of each processing
element to reduce the startup overhead of I/O as well as to assign
at least one chunk to each process to maximize parallelism. In
terms of the chunk shape, ArrayUDF chooses a square shape
(lines 2 and 3 in Fig. 3) to minimize the number of ghost cells for
each chunk. A formal analysis of this strategy is given in § 3.3
and is illustrated in Fig. 4, where the square chunk reads 12 ghost
cells but the non-square one reads 20 ghost cells.

To identify an optimal and layout-aware chunking, we take
the row-major layout as an example because it is popular in most
array data formats. A storage system typically organizes the
elements of a multi-dimensional array in a linear order based on
their coordinates. With the row-major layouts, the 1% dimension
is the slowest varying dimension and the last dimension is the
fastest varying dimension. In this case, ArrayUDF chooses the
chunk whose layout on disk is as contiguous as possible by
maximizing the fast-varying (or higher) dimensions for a chunk.
In other words, ArrayUDF chooses the chunk size based on the
linearized organization of an array in row-major order (lines
5 to 7 in Fig. 3). We also consider the memory limit and the
parallelism (line 0 in Fig. 3). The impact of reading extra ghost
cells is not considered here because the cells from the chunk and
the ghost zones often form a single or few contiguous reads as
illustrated in Fig. 5. More detailed analysis is given in § 3.3.

Square Shape

[Chunk Cell Non—Square Shape

[X] Ghost Cell

D Chunk

of ghost cells = 20
of ghost cells = 12

Figure 4: An example showing the number of ghost cells for
different chunk shapes.

3.2.2 Dynamic ghost zone building using a trial run. In most use
cases, the programmer who develops the UDF can determine the
thickness of the ghost zone and therefore can provide the infor-
mation to the ARRAY object to help with dynamic data chunking.
However, it is possible that the size of ghost zones are unknown

D Cell % Ghost Cell D Chunk ——> Row-major order

Figure 5: An example showing the layout-aware chunking
for a 4x9 array. On the left, a chunk occupies more than one
row. On the right, a chunk occupies a partial row.

a priori, for example when the UDF source code is not accessi-
ble to the user. In such cases, ArrayUDF provides a mechanism
based on a “trial run” to determine the ghost zone size. During
the trial run, ArrayUDF gathers all the relative coordinates used
in the UDF. We assume the relative coordinates do not depend
on the values of the input array, and, therefore, only perform the
trial run on a small number of cells. At this time, we only perform
this trial run on the first data point on each PE. After the trial
run, ArrayUDF chooses the maximum absolute value among the
gathered relative coordinates for a dimension as the number of
ghost cells of this dimension. Therefore, different dimensions can
have a different number of ghost cells. For a certain dimension, the
current ArrayUDF implementation requires that both directions
have the same number of ghost cells. This reduces the number of
input parameters needed by ArrayUDF, but it also causes reading
unnecessary ghost cells. However, as observed in most example
applications, they require the same number of cells in both direc-
tions of a given dimension. We can easily extend ArrayUDF to set
the sizes of a ghost zone for different directions of a dimension.
Sometimes, it is impossible to determine the ghost zone size using
the trial run. In this situation, ArrayUDF uses the default ghost
zone size. Moreover, users can specify a default ghost zone size
when initializing ARRAY object, as shown in Fig. 1.

3.2.3 Putting it all together: the Apply algorithm. The Apply
function of ARRAY is the entry point to execute a UDF and it also
contains a skeleton of our runtime system. The pseudocode of
Apply is outlined in Fig. 6. Overall, the pseudocode shows that the
UDF P, 4 processes array A and stores the results in array B. As
shown in Fig. 1, users can provide their own chunk size (cs) and
ghost zone size (gs), both of which are therefore considered as the
input. To support parallel processing, each process (PE) initializes an
ARRAY instance by itself and follows the same algorithm without
any communication. During the initialization, each process obtains
the total number of processes P and the rank R of itself among all
processes using certain library calls such as MPL In the following,
we describe how Apply works on a single process.

From line 0 to line 1, the Apply algorithm determines the chunk
size and ghost zone size, if a user does not provide them. The meth-
ods for determining these two parameters are discussed in § 3.2.1
and § 3.2.2. Then, the algorithm starts to read a chunk into memory
for processing (lines 2 and 3). The ID of the first chunk to be read
by a process is equal to the rank of the process, which permits each
process to have different chunks to process concurrently. Reading
the chunk is performed by the LoadNextChunk function, which first
converts the chunk id to the coordinates of the top-left corner and
bottom-right corner of a chunk. Then, it extends the coordinates of

the chunk to include the ghost zone. Finally, the LoadNextChunk
function reads the chunk into memory if the coordinates are valid.

Once the Apply algorithm receives the chunk data from Load-
NextChunk, it starts to apply the UDF (i.e., P, 4r) on each cell of
the chunk (lines 4 - 6). Specifically, a new instance of STENCIL is
initialized. Then, P, g is called with the new STENCIL instance.
The returned result of the UDF is stored in B. After a PE processes a
chunk, it reads the next chunk to process. The ID of the next chunk
is the current id plus the total number of processes (line 7). The
data stored in B can be flushed to persistent storage, depending on
the available memory space.

3.3 Analytical model for ArrayUDF

In this section, we present an analytical model to characterize the
performance of ArrayUDF, with the primary goal of deriving a
chunking strategy. We first build a generic model without consider-
ing array layout and then adapt the model for specific array layouts.
The notations used in the model are shown in Table 1.

Table 1: Notations used in the chunking strategy model

Chunk size in the i dimension, i € (1,...,d)
Number of cells in a chunk, ¢ = H;.izl ci

Number of chunks C = H?:I [Ni/cil

Size of a ghost zone

Number of elements in a chunk plus its ghost zones
Number of elements in all ghost zones

Rank of an array (number of dimensions)

Memory size of a single process

Size of the i™* dimension, i € (1,...,d)
Number of array elements, N =]"[;.i:1 N;
Number of parallel processes

Slzlz| |0~ > 0|8

Execution of a computation function typically contain three over-
heads: computation time, communication time, and I/O time. In the
following analysis, we will ignore the computation and commu-
nication costs. By design, each process in ArrayUDF can evaluate
the UDF in parallel without inter-process communication. We will,
therefore, assume that there is no communication overhead. The
computation time for each element of the output array can be rea-
sonably represented as a constant, independent of the logical array
layout and the physical chunk layout; therefore, as long as there
are enough array cells to be divided evenly among processes, the
computation cost can be divided evenly and will not depend on how
we partition the chunks. Similarly, selection of the layout of the
chunks does not affect the computation time. To further simplify
the analysis, we also assume the ghost zones are of the same width
in each direction and every dimension.

Overall, ArrayUDF divides the evaluation into chunks whose
shape and size is determined analytically. On each process, the
evaluation proceeds independently. From Fig. 6, we see that the key
I/O cost is to read a chunk of the input array and the ghost zones. Let
c and e denote the number of elements in a chunk and the extended
region including the chunk and its surrounding ghost zones, as
shown in Table 1. Given the size of a chunk (c; X ¢z X ... X ¢g), the
total volume of data in the chunks is ¢ =]_[?:1 ci. To evaluate the
size of e, we need to know how many ghost zones are present. For
simplicity, if a part of the ghost zone is available, we will count it as

FUNCTION A-Apply(P,qr. B)

cid = A>R;

cell,qr = STENCIL(c, A—gs, A—cs, cbuf)

B =Pyqar (cellyar)
cid = cid + A—>P
8. flush B to disk if necessary

FUNCTION LoadNextChunk(cid, A—gs, A—cs)

0.
1.
2.
3.
4. for each cell ¢ within the chunk cbuf do
5
6
7

c1 = Cp] — A>gS; Cpy = Cpp + A>gs

if checking array boundary fails then
return NULL

Read all cells from c;; to ¢, within A into buffer cbuf

read cbuf

ARl

Py qf : pointer to user-defined function. A : an array to Apply P, g B : result array.

A—cs : chunk size. A—>gs : ghost zone size. A—P : the total number of processes. ~A—R : the rank of current process.
if(A—cs == NULL) then Determine the chunk size A—cs, as discussed in § 3.2.1
if(A—gs == NULL) then Issue a trial-run to get A—gs, as discussed in § 3.2.2

// the ID for the first chunk is equal to the rank of current process

while ((cbuf=LoadNextChunk(cid, A—gs, A—cs)) !=NULL) do

//Initialize a Stencil to represent the real cell ¢
//Run the UDF function on the Stencil
//Next chunk in round-robin manner

0. Obtain the top-left corner coordinate ¢;; and the below-right corner coordinate cp, from cid
//expand chunk with ghost cells

//No user-defined chunk size
//No user-defined ghost zone size

//See section § 3.2.1

Figure 6: Apply algorithm in ArrayUDF. We use “—” symbol to denote the components of A. For example, A — Apply is the

Apply method of A and A—cs is the chunk size metadata of A.

present. As shown in Figure 4, it is possible for a chunk to have two
ghost zones along each dimension i. However, those ghost zones
might not be present if the expected ghost zones are outside of the
extent of the arrayz, as shown in Fig. 2. For dimension i with chunk
size ¢;, the N; points are divided into [Nj/c;] chunks, which creates
need for 2([N;/c;1—1) ghost zones along this dimension. Given the
surface area perpendicular to this dimension to be [;»; Nj, the total
volume of ghost zones along dimension i is 26([Ni/ci1—1) [1z Nj,
and the total volume of data in ghost zones over all dimensions is:

d
=25y, ((Nife1 =0 [;) ®)
i=1 J#i
The average number of elements for processing a chunk is:
e=c+G/C 9)

3.3.1 Generic performance model. In this performance model,
we assume the layout of the array dimensions is unknown or the
time to read an arbitrarily shaped subarray is strictly a linear func-
tion of the number of elements in the subarray. Thus, the time to
read a chunk plus its surrounding ghost zones is given by:

tio = ape + ﬁ() (10)
For C chunks and P processes, each process has at most [C/P]
chunks and the maximum read time is:
Tjy = (ave + fo) [C/P] (11)
The selection of the optimal chunk size can be formulated as an
optimization problem:

. e
min TY (c1,¢2,...,¢q) s.t.
€1,€2,---,6q 10

d (12)
(1) ci <Np1<i<d; (2) l_[ci <M; 3)C>P
i=1
Constraint (2) guarantees that each chunk fits within the available
memory while constraint (3) enforces that each process has at

2Tt is possible to have a periodic boundary condition, which has a different requirement
on ghost zones.

least one chunk to work on. Given a large array - the case we are
interested in — constraint (3) is easily satisfied and constraint (2)

can be turned into:
d

1_[01- =M (13)

i=1
To generate an analytical solution for the above optimization prob-
lem, we further assume the ceiling operator can be removed from
all the above expressions, which leads to:
ge d . 3L ((Nifeim) s Ny)
o ~ (a0 [Hi:1 t T4, Nic;

1%, Nifei
P

+ho

= (14)

d
aoN 2a96N 1 1 N
QN 220N sh L L), P
P P L N PM
In the above expression for Tigoe, the only term that is affected by
the choices of ¢; is the expression), 1/¢; (multiplied by a positive
constant). Given the constraint in Eq. 13, the minimal value of Tigoe

is obtained with ¢; = ¢z = ... = ¥M, which minimizes the total
number of ghost cells G. In short, when there are no preferred
dimensions, the chunks should be as large as they can fit in the
available memory and have each side of the same size.

3.3.2 Layout-aware performance model. When the layout of an
array in a file is known, typically there are preferred dimensions
for partitioning the array into chunks. The key reason for this
is that the sequential read operations are significantly more effi-
cient than random reads. In many cases, a multi-dimensional array
is organized in row-major ordering. Hence, there are significant
advantages to partition along the slowest varying dimension:

e Under the row-major ordering, when partitions are based on the
slowest varying dimension, each partition can be read with a
single sequential scan operation.

e When a dimension is fully contained in a chunk (¢; = N;), there
is no ghost zone for the dimension, which reduces the number
of read operations needed for ghost cells.

o When the partition is only along the slowest varying dimension,
the ghost cells follow the chunk in the file, which allows the
ghost cells to be read with the chunk in a single sequential scan.

Therefore, partitioning along the first dimension (i.e., the slowest

varying dimension) is highly desirable as long as the array can be

evenly divided onto the P processes. In this case, Eq. 8 turns into:
d
G =28(INi/er] = D) | | Nj ~ 26N(1/er - 1/Ny)
j=2
This leads to the following expression for the read time:
M+2a15N(l 1)+ﬂl_N

Tl o -
to P P PM

o0 N (15)
As c; approaches 1, the value of G approaches 2N, which means
each process reads more ghost cells than in the generic case con-
sidered above. However, since the read operations in this case are
large sequential scans, the value of ¢; is considerably smaller than
@ in the generic case. Thus, dividing chunks along the slowest
varying dimension still reduces the overall execution time.

In practice, we find that dividing the array according to the
linearization order gives the same advantage as sequential scans,
while maintaining better load balance among the processes. This
chunking approach may produce ghost zones of irregular shape
as illustrated in Fig. 5, however, the ghost zones can still be read
with the array elements in the chunk in a single sequential scan
operation. Lines 5 and 6 in Fig. 3 implement this approach.

4 PERFORMANCE EVALUATION

We have evaluated ArrayUDF extensively to demonstrate its ef-
fectiveness. We explored the design considerations of ArrayUDF
and the assumptions used by its performance model with syn-
thetic datasets. We have also performed several tests to compare
ArrayUDF with RasDaMan [6], SciDB [9], and EXTASCID [16, 17],
where we used the latest versions of these systems available on-
line. Finally, we compared ArrayUDF with Spark — the system with
the state-of-the-art generic UDFs - using four real-world scientific
datasets and analysis operations.

Experimental setup. We ran our tests on Edison, a Cray XC30
supercomputer at the National Energy Research Scientific Com-
puting Center (NERSC). Edison is equipped with 5576 computing
nodes. Each computing node has two 12-core 2.4 GHz Intel “Ivy
Bridge” processors and 64 GB DDR3 memory. All tested datasets are
stored as HDFS5 files in a Lustre parallel file system. The ArrayUDF
implementation is compiled with the Intel C/C++ Compiler version
16.0. The Spark installation used as the main comparison is state of
the art on HPC [12]. Since Spark does not have native support for
HDF5 files, we have use H5Spark [26] to read HDF5 data directly
into its RDDs, and therefore reduce the potential impact of the file
system and have a fair comparison between ArrayUDF and Spark
on the same storage model.

4.1 Synthetic data and Poisson equation solver

To explore the impact of chunking parameters, to verify the ana-
lytical model, and to compare with the performance of SciDB, Ras-
DaMan, EXTACID, and Spark, we have used synthetic two datasets.
We have created these datasets that contain two multi-dimensional
arrays, S1 and S2, containing floating point data. S1 is a 2D array

with ranges (100000, 100000) for (x, y) dimensions, giving 38 GB in
file size. S2 is a 3D array with ranges (10000, 1000, 1000) for x, y,
and z, respectively, resulting in 38 GB in file size. We have used the
Poisson equation solver, which is widely used in financial mathe-
matics, Riemannian geometry, and, thus, topology. Using the stencil
operator of ArrayUDF, we can express the 2D Poisson equation
solver as 45(0,0) — S(—1,0) — S(0,1) — S(1,0) — S(—1,0). Similarly,
the 3D Poisson equation solver can be expressed as 65(0,0,0) —
S(=1,0,0)=5(0, 1,0) = S(1, 0, 0) = S(—1, 0,0) — S(0, 0, —1) — S(0, 0, 1).
For the tests describing SciDB in this subsection, we used at most
11 compute nodes. These 11-node tests were dedicated to match
the SciDB installation at NERSC supercomputing center, where 10
nodes are used for the data instances of SciDB and 1 node for the
metadata instance of SciDB.

o] o]
©]—e— Measured performance N']—e— Measured performance
=3 Predicted performance —— Predicted performance
o
P
)
28
'_O
o
o
-
°© >°°\Qtv"m\&@lP@Q@@\Q@"Q\QPQ\@“&@@\
N N N N N Q N N
SN NN NN NN N
RE S
Q S ¢ ¢ @ Q¢
Chunk Size
(b) S2

Figure 7: Linear relationship between the chunk size and the
cost of reading a chunk.

Linear relationship between the chunk size and the time
of reading it. In our performance model, we assume that the cost
of reading a chunk is proportional to its size. To evaluate this as-
sumption, we ran tests on S1 and S2 multiple times for a certain
configuration and then to build a theoretical model. We show the
I/O cost with different chunk sizes for S1 and S2 in Fig. 7. It is
obvious that as the chunk size increases, the time to read the chunk
increases linearly as well. The residual standard deviations of this
fitting are 3.53 and 1.30 for S1 and S2, respectively. Thus, we can
conclude that the linear relationship exists between the size of a
chunk and its read time.

(=3 < 4
© 1—e— Column Major Organization —6— Column Major Organization
o —A— Row Major Organization —4— Row Major Organization
< @
—_ D
28 o
e E
F .
o
o
T T T T T T
© A YRR IEON S Y
N O O N A\ 2)
N N N RN R NN N
S P ETFF S FF T e
& e e o0 @ S S S S S
NSNS A 2 N N R R
Chunk Size Chunk Size
(a) S1 (b) S2

Figure 8: Cost of reading ghost cells for different chunk
shapes and for different layouts.

Impact of chunk shape on the cost of reading ghost cells.
Using the general performance model (i.e., Eq. 12), we predict that

the chunk shape has a significant impact on data read performance.
Specifically, for a fixed size chunk, the square shape guarantees
that the number of ghost cells is minimum and, therefore, it has
minimum I/O cost. Since we develop the general performance model
without relying on any specific data organization, it can characterize
the average performance of different organizations. To justify this
result, we consider two data organizations, including row-major and
column-major, in this test. We compare the performance of reading
a chunk with the same shape from these two organizations. As the
HDF5 format uses row-major organization to store data, we use
the transpose-based data reorganization service of SDS framework
[19, 38] to turn the row-major organization into the column-major
one. We report the results in Fig. 8. As the chunk shape changes
from the left (row-major) to the right (column-major), the time for
reading the chunk from column-major organization decreases but
the time for row-major organization increases. The square shaped
chunk in the middle has the smallest overhead when we consider
both organizations together. In other worlds, without considering
the organization, the square-shaped chunk has minimum overhead.
Taking only the row-major data organization as an example, we
can observe that the squared chunk is not always the optimal shape,
although it needs minimum amount of ghost cells. Actually, at this
time, the chunk layout on disk is the dominant factor for the I/O
performance. Our analysis in Section 3.3.2 takes this into account.
In summary, these test results confirm our model formed based on
a theoretical analysis.

3 4
© |—— Measured performance ‘© |—e— Measured performance
N Predicted performance —— Predicted performance
] <7
2 O
[O =)
SIANPAVS :
[[
4 o
© AN 2
e e\ o
<4
n
T T T T T T T C’) L T T T T T T T
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Ghost Zone Size Ghost Zone Size
(a) S1 (b) S2

Figure 9: Performance of reading ghost zone in row-major
layout.

Overhead of reading ghost cells with layout-aware chunk-
ing. In the layout-aware performance model, we assume that the
overhead of reading ghost zone can be ignored. To justify this as-
sumption, we have designed a test to measure the time for reading
ghost zone sizes, from 1 to 64. In Fig. 9, we show the performance
of reading ghost cells from S1 and S2 datasets. From the figure,
we conclude that by increasing the ghost zone from 1 to 64, the
time spent to read a single chunk remains flat. Linear regression
of multiple measured times show a flat line to represent constant
time. With the layout-aware chunking, the ghost cells tend to be
contiguously organized with other cells on disk, resulting in the
same read performance. Therefore, reading a small amount of ghost
zone cells has negligible impact on the performance of reading a
chunk. We conclude that during the layout-aware chunking, the
assumption we used in the model is reasonable.

Overhead of a “trial run” to detect the size of the ghost
zone. ArrayUDF uses a “trial-run” approach to decide the size of

Table 2: Overhead of the trial run (microsecond).

The number of cells used by UDF

Data sets 4 8 16 32 64 128 256
S1 037 038 046 048 0.54 059 0.80
S2 048 0.52 0.65 075 0.79 084 1.04

the ghost zone for a given UDF. In this test, we have measured the
overhead of a “trial run” with respective to different numbers of
array cells used by UDF. These numbers range from 4 to 256. When
the number of the tested cells is larger than the number of cells
required by the Poisson equation solver, we append random array
cells at the end. In Table 2, we show the overhead of a “trial run”.
Overall, we observe that the overhead of trial run is less that one
microsecond. Compared with the other components of ArrayUDF
presented above, this overhead is negligible.

200

- (=1
©

B Dynamic Loading

W ArrayUDF Optimized

B Dynamic Loading
W ArrayUDF Optimized

o
8
—_ (I)
L 0
0E>8— EY
= . l
? l
wn
Llll =LL
1 PSS SO S S
o 0“00000000
N N N N NCNOMNR S S S S ST S S
R R SRS w%u@@«%q
QT STSTST TS S
\"Q/Q’\"@\Q’Q@\
Chunk Size
Chunk Size
(a) S1 (b) S2

Figure 10: Comparing two methods to handle ghost zone.

Comparing different methods to handle ghost zone. Array
data management systems, such as ArrayStore [37], used a dy-
namic loading method to access ghost cells. In this method, when
a chunk needs to access ghost cells from its neighborhood chunk,
this method reads the neighborhood chunk from disk into memory.
Based on the fact that a UDF has a well-determined access pattern
for ghost cells, ArrayUDF optimizes the accessing of ghost cells via
statically extending each chunk by a ghost zone when the chunk
is first read from disk. As a result, separate disk accesses are not
needed for ghost cells in ArrayUDF. We use the low-overhead “trial
run” approach to obtain accurate size estimates for a ghost zone.
In this test, we compare these two methods by implementing the
dynamic chunk loading in ArrayUDF. As shown in Fig. 10, in read-
ing ghost zones from S1 and S2 datasets, the optimized method in
ArrayUDF is on average four times faster than the dynamic chunk
loading method. Thus, ArrayUDF has an efficient way in handling
access to ghost zones.

Comparing ArrayUDF with SciDB, RasDaMan, EXTASCID,
and Spark in executing the standard “window” operator. As
we discussed in the previous sections, the Poisson equation solver
cannot be expressed directly using the “window” operators of SciDB
and RasDaMan. To compare the performance and versatility of Ar-
rayUDF, we compare the performance of the “window” operator
these systems provide, where the operation is to compute the aver-
age for a 2x 2 window on 2D data and a 2X 2 X 2 window on 3D data.
We also include EXTASCID and Spark for a complete comparison.
For fairness of the evaluation platform for all these systems, we
have installed them on a single Linux desktop. The desktop has two

':}7 @ RasDaMan(Sequential) g W Spark
o | W Spark &1 @ C++ Hand-optimized
B SciDB ~ | B ArrayUDF
§ | B EXTASCID(Hand-optimized)
G‘u') B ArrayUDF GS 118X
= 384X 107%71% 2 57
2 %7 pix 1ax | anx
Fo -
8%) -0.6% _01%
5 h.2x *4
S 2
3
2] 2]
o 2D 3D o St S2
Data sets Data sets

(a) Time for evaluating “win- (b) Time for solving the Pois-
dow” operators. son equation solver.

Figure 11: Comparison of ArrayUDF with the state-of-the-
art data processing systems.

CPU cores (Intel i7-5557U CPU with 3.10 GHz), two threads per
core, and a local disk (Seagate ST1000LM014-1E]J1) with the EXT4
file system. We show these test results in Fig. 11a. The original
datasets S1 and S2 are too large for the processing on a single node.
Thus, we used smaller size datasets for tests. The tested 2D dataset
has an array with a size of (10000, 30000) and the 3D dataset has a
size of (1000, 1000, 400). The chunk size for all the systems is set to
be (5000, 15000) for 2D and (1000, 1000, 100) for 3D which give 4
chunks per array—equivalent the number of threads in the system.

RasDaMan has the highest execution time because the version
that is publicly available only supports “inter-query parallelization”
and, thus, it can only use one core to perform the calculation. Spark
can use its Map and Reduce interface to implement the window-
based average, however, it needs to duplicate the data for different
windows. As a result, it has the second highest execution time.
In terms of SciDB, it handles each window independently and in-
efficiently [23], thus SciDB is also much slower than ArrayUDF.
We also scale the SciDB tests to 11 nodes on the Edison system
for S1 and S2 datasets. In these tests, we observe similar results.
EXTASCID provides a robust array data storage model, but it has
no portable window-like operator yet. For comparison, we have
implemented the window function manually as a generalized linear
aggregate (GLA) function, which is the abstract interface in EX-
TASCID. Basically, the window functions are written in C++ and
they use the EXTASCID I/O driver to access the arrays. Even with
this hand-optimized code, the execution times of EXTASCID are
similar to those of ArrayUDF. In other words, the performance of
ArrayUDF is very close to the C++ hand-optimized code. Thus, we
conclude that ArrayUDF provides more flexibility to define opera-
tions, and it is as efficient as highly-optimized code in performing
“window” based analysis tasks.

Comparing ArrayUDF with Spark on solving the Poisson
equation on datasets S1 and S2. In this test, we compare the
performance of using ArrayUDF and Spark to solve the Poisson
equation with 64 computing nodes. By using ArrayUDF, we can
directly define and execute the Poisson equation solver on arrays
stored in datasets S1 and S2, as shown at the beginning of this
section. To use Spark for expressing these operations, we apply
the “flatmap” and “reducebykey” functions. The general idea is
that all the adjacent stencil cells required by a cell are viewed as a
group and all cells within the group are aggregated onto a single
reducer to perform the computation. Since each cell belongs to

multiple groups (of its neighbors), we use “flatmap” to transform
each cell into multiple (key, value) pairs, where the key is the group
ID and the value is the actual data. After “flatmap” finishes, we use
“reducebykey” to consolidate all the cells with the same group ID
together. Basically, each reducer is responsible for computing a cell
in the result array. One may argue that users can write a specific
Map function without a Reduce funtion to solve the Poisson equa-
tion. However, as discussed in previous sections, both ArrayUDF
and Spark aim at providing a generic UDF mechanism for users
to express high-level operations without burdening users to write
custom programs for performing different operations.

We compare the performance of ArrayUDF and Spark in exe-
cuting the Poisson equation solver in Fig. 11b. For datasets S1 and
S2, ArrayUDF is 11 and 118 times faster than Spark, respectively.
Since the Poisson equation solver on 3D data needs to access more
adjacent cells than on 2D data, ArrayUDF achieves a higher perfor-
mance improvement for processing S2. Basically, the more neighbor
cells are required, the more times the entire array is replicated in
Spark. As the size of the data to be replicated increases, Spark
spends more time on communication and shuffling for “flatmap”
and “reducebykey” functions. Compared with Spark, ArrayUDF
allows users to define and execute the Poisson equation solver di-
rectly on an array. Thus, there is no data replication during the
runtime. Moreover, as ArrayUDF can automatically build the ghost
zone using a trial-run, the expensive communication is avoided.

4.2 ArrayUDF for real scientific data analysis

We have evaluated ArrayUDF to perform several real-world analysis
tasks on four scientific data sets: S3D, VPIC, MSI, and CoRTAD.
We summarize the properties of these datasets and the analysis
operations performed in this study in Table 3. A brief background
is presented in § 2. To compare performance, we use Spark to
implement the same analysis tasks on these datasets. The method
to implement these analysis operations is the same as the one we
use for the Poisson solver on the S1 and S2 datasets. We test each
task with different numbers of CPU cores, scaling from 384 (i.e.,
16 compute nodes) to 1536 (i.e., 64 nodes). As shown in Fig. 12, for
S3D, VPIC, and MSI analysis, ArrayUDF outperforms Spark by up
to 26x%, 220%, and 2070X, respectively. For CORTAD, Spark crashes
due to out-of-memory (OOM) errors. We discuss the performance
of each of these analysis tasks in the following.
Table 3: Real-world scientific datasets and operations

dataset [Rank Size (GB) Operation]

S3D 3D 301 Vorticity computation
MSI 3D 21 Laplacian calculator
VPIC 3D 36 Trilinear interpolation
CoRTAD 3D 225 Simple moving average

$3D. For the S3D dataset, we compute the vorticity, which is
defined in Eq. 2. For a single point in S3D, the vorticity computation
needs the values of four neighbors in total and two neighbors per
direction. In this test, we use the dataset in the x direction. This
data has 1100 X 1080 x 1408 dimensions, resulting in a file size of 22
GB. We show the execution time for vorticity computation using
ArrayUDF and Spark in Fig. 12a. On average, ArrayUDF is 18 times
faster than Spark. We observe similar performance speedup in the y
and z dimensions. In summary, we observe that ArrayUDF is more
efficient than Spark in computing vorticity over the S3D dataset.

)
o
o e
=1 B Spark B Spark
g B ArrayUDF g W ArrayUDF
o
0 o
25| z2=]
o)
E E
F g Fol
o | 155X
« 215X
o 220X
26X 19X 10X
7 g4 768 1536 384 768 1536
of CPU cores # of CPU cores
(a) 3D (b) MSI

o
8 m Spark 8 B ArrayUDF
o B ArrayUDF o
S | ©1
g E
o |
23 2%
g £3
= =

2070% 1583X 1169X

1 10
0 20 40

384 768 1536 T 384 768 1536
of CPU cores # of CPU cores
(c) VPIC (d) CORTAD

Figure 12: Evaluation with analyzing real-world scientific datasets. ArrayUDF is up to 2070X faster than Spark. For the CoORTAD
dataset, where we show the performance only for ArrayUDF, Spark crashes due to out-of-memory (OOM) error.

MSI. The MSI data [34] used in our test contains a 123 X 463 X
188960 3D array which has 21 GB in file size. This array contains
images of a potato eye. The operation of interest on this dataset
is the Laplacian calculator, as presented in Eq. 3. In our tests, we
observe that ArrayUDF is 196 times faster than Spark. Since the
Laplacian calculator needs five neighbor cells, but vorticity on S3D
only needs two, ArrayUDF achieves a higher speedup in this test.
As discussed before, the more adjacent cells are needed in UDF, the
higher speedup ArrayUDF can achieve.

VPIC. In the space weather simulation using VPIC, the total
size for the magnetic field data is 36 GB and the data has x, y
and z dimensions [11]. The dimensions of the dataset are 2000 X
2000 X 800. We use both ArrayUDF and Spark to implement the
trilinear interpolation shown in Eq. 4. For simplicity, we assume
that there is a particle in a cell. But, our ArrayUDF can be extended
to support more flexible interpolation. We report the results for the
x dimension in Fig.12c—we obtain similar results for dimensions.
On average, ArrayUDF is 1607X faster than Spark in this test.

CoRTAD. CoRTAD is a collection of sea surface temperatures
(SST) [1]. It contains the weekly temperature for 1617 X 4320 sites
from 1981 to 2010. Thus, it is a 3D array with size 1617 X 4320 X
8640, where the third dimension is the number of weeks (i.e., 8640
weeks). We compute a moving average based smoothing on this
data. Basically, for each site, we smoothen its temperature based
on the month, i.e., compute the average of four neighbor array
cells. In Fig. 12d, we depict only the performance of ArrayUDF. For
the tests with the same number of CPU cores, Spark crashes with
out-of-memory errors. The reason for the OOM errors is the need
for Spark to replicate the entire dataset 4 times in oder to compute
the moving average. Moreover, since we also need to use the (key,
value) pair structure and the Scala object type to store the data, the
total data size increases by more than 8 times, which contributes
to the OOM errors. Meanwhile, ArrayUDF successfully completes
the moving average computation for this large dataset without any
memory footprint pressure.

5 RELATED WORK

UDFs are widely supported by relational database management
systems, such as SQL Server [13], IBM DB2 [44], MySQL [42], and
PostgreSQL [30]. MonetDB [33] has an extension to support vector-
based UDFs that take advantage of the columnar data representa-
tion. The UDFs within these systems are based on the relational
set semantics and permit users to define operations at tuple or
table level—known as User-Defined Aggregates (UDA) [15]. The

key difference between ArrayUDF and these types of UDFs is that
ArrayUDF is developed for multi-dimensional arrays and allows
more general structural locality based operations.

In MapReduce [18], UDFs consist of two steps—Map and Reduce.
Map applies the UDF on a single key-value pair and produces one or
more key-value pairs as output. Reduce consolidates key-value pairs
having the same key and then applies another UDF. Reduce requires
expensive data shuffling to repartition data across nodes. Among all
extensions to MapReduce [4, 10, 21, 22, 40], Spark provides a much
richer set of UDFs for iterative in-memory analysis. Compared to
MapReduce and its extensions, ArrayUDF requires a single step
to express UDFs on a set of related array cells, thus avoiding the
expensive shuffle stage.

Array database systems such as RasDaMan[6], AML[27], SciDB[9],
SciQL[24] and EXTASCID[17], have UDF support. Rusu et al. [35]
provides a complete survey on this topic. Typically, these array
UDFs follow a similar idea to relational database systems, where
users define an operation on a single element, i.e., array cell. If the
UDF requires multiple adjacent cells, these have to be mapped into
tuples and then apply the UDF. ArrayUDF is a novel UDF type for
arrays that allows users to define operations directly on adjacent
array cells, without any mapping. Moreover, to support efficient
data access in a shared-disk system, ArrayUDF performs dynamic
chunking and ghost zone building. In contrast, array database man-
agement systems have a shared-nothing architecture and rely on
data ingestion to handle chunking and ghost zones. A specific
type of array UDF is the window-based Apply operator [27]. SciDB
provides this function via a highly optimized window operator. Ras-
DaMan has a similar operator named condense. While similar to
ArrayUDF, these operators support only fixed-size windows and the
operations on a window are limited. ArrayUDF generalizes the win-
dow shape and the operations for the cells within a window. Join
operators are found to be expensive to support these operations
because of data replication [20, 43]. SAGA [41] explores aggregate
operations on scientific arrays stored in native data formats.

The domain-specific languages (DSL) [7, 29] share similarity
with our ArrayUDF in leveraging stencil behaviors to improve per-
formance of array based data analytics. These DSLs are mostly
developed as programming language and compiler extensions with
the goal of increasing the efficiency of calculation and memory data
access. But, in ArrayUDF, we developed a flexible computing model
towards large-scale data analytics, i.e., to derive knowledge from
the multidimensional arrays in data files directly. The ArrayUDF
generalizes the MapReduce — like systems to realize a wider range

of operations on arrays, including the stencil operator supported by
these DSLs. Beyond that, ArrayUDF has the capability to express
other types of operations, such as aggregation, filtering, etc. More-
over, ArrayUDF provides optimizations (e.g., trial run based ghost
zone determination, disk layout aware/unaware partitions for mul-
tidimensional array) for efficiently processing out-of-core data sets,
which are too large to be quickly loaded into memory, even with
multiple nodes. Our analytical performance model for ArrayUDF
can also be used as the foundation to optimize these existing stencil
DSL systems in handling large-scale scientific datasets on disk.

6 CONCLUSIONS AND FUTURE WORK

Customized data analysis, especially for data stored as multidimen-
sional arrays in large files, is a common method to extract insights
from data and the UDF mechanism is a general strategy to sup-
port this analysis. However, the current UDF implementations are
not able to effectively express the structural locality present in
most array based data analysis operations, such as computing the
vorticity for a 3D flow field, the moving average for a time series,
etc. These operations have to be expressed as expensive join or
reduction operations. We design ArrayUDF to easily capture the
generalized structural locality and implement an in situ processing
system optimized for multi-dimensional arrays. The generalized
structural locality mechanism of ArrayUDF allows users to define
a different operation on each neighbor separately and, therefore,
express more complex customized data analysis. The in situ pro-
cessing system automatically partitions data stored in raw data files
and creates ghost zones for the arrays stored in files without an
expensive data ingestion phase. Our automatic data partitioning
minimizes the execution time based on a an analytical model of
the expected performance. It is also able to take advantage of the
layout of arrays in input data files. Our evaluation using a number
of different scientific datasets show that ArrayUDF is up to three
orders of magnitude faster than Apache Spark. In future, we plan
to enhance ArrayUDF with a filter feature to reduce loading of
unnecessary array cells in the result arrays. We will also explore
the use of ArrayUDF to process stream and real-time data.

Acknowledgment. This effort was supported by the U.S. Department
of Energy (DOE), Office of Science, Office of Advanced Scientific Computing
Research under contract number DE-AC02-05CH11231 and by a DOE Career
award (program manager Dr. Lucy Nowell). This research used resources
of the National Energy Research Scientific Computing Center (NERSC), a
DOE Office of Science User Facility.

REFERENCES

[1] The Coral Reef Temperature Anomaly Database (CoORTAD) Version 4 - Global, 4
km Sea Surface Temperature and Related Thermal Stress Metrics for 1981-10-31
to 2010-12-31 (NODC Accession 0087989), 2012.

[2] M. Abadi, A. Agarwal, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems, 2015.

[3] L Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. Nodb: Efficient
query execution on raw data files. In SIGMOD ’12, 2012.

[4] L. Antova, A. El-Helw, M. A. Soliman, Z. Gu, M. Petropoulos, and F. Waas.
Optimizing Queries over Partitioned Tables in MPP Systems. In SIGMOD, 2014.

[5] P.Baumann. Management of Multidimensional Discrete Data. VLDB 7., 1994.

[6] P.Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The Multidi-
mensional Database System RasDaMan. SIGMOD Rec., 27(2):575-577, 1998.

[7] M. Bianco and B. Cumming. A generic strategy for multi-stage stencils. In
Euro-Par’14, pages 584-595, 2014.

[8] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani. Parallel Data Analysis
Directly on Scientific File Formats. In SIGMOD’2014.

[9]
(10]

[11

[12]
(13]

[14]

(15]

[16

(17]

(18]

[19]

[21]

[22

(23]
[24]

[25]

(37]
(38]

[39
[40]

P. G. Brown. Overview of SciDB: Large Scale Array Storage, Processing and
Analysis. In SIGMOD, 2010.

J. B. Buck, N. Watkins, and et al. SciHadoop: Array-based Query Processing in
Hadoop. In Supercomputing Conference (SC), 2011.

S. Byna, J. Chou, O. Riibel, Prabhat, H. Karimabadi, et al. Parallel I/O, Analysis,
and Visualization of a Trillion Particle Simulation. In SC, 2012.

N. Chaimov, A. Malony, S. Canon, C. Iancu, and et al. Scaling Spark on HPC
Systems. In HPDC 2016, 2016.

S. Chaudhuri and V. R. Narasayya. An Efficient Cost-Driven Index Selection Tool
for Microsoft SQL Server. In VLDB °97, 1997.

J. H. Chen, A. Choudhary, B. de Supinski, and et al. Terascale Direct Numerical
Simulations of Turbulent Combustion Using S3D. Computational Science &
Discovery, 2(1):015001, 2009.

Y. Cheng, C. Qin, and F. Rusu. GLADE: Big Data Analytics Made Easy. In
SIGMOD 2012.

Y. Cheng and F. Rusu. Astronomical Data Processing in EXTASCID. In SSDBM
2013.

Y. Cheng and F. Rusu. Formal Representation of the SS-DB Benchmark and
Experimental Evaluation in EXTASCID. Distributed and Parallel Databases,
33(3):277-317, 2015.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Commun. ACM, 51(1):107-113, Jan. 2008.

B. Dong, S. Byna, and K. Wu. SDS: A Framework for Scientific Data Services. In
Proceedings of the 8th Parallel Data Storage Workshop, PDSW ’13, pages 27-32,
New York, NY, USA, 2013. ACM.

B.Dong, S. Byna, and K. Wu. Spatially Clustered Join on Heterogeneous Scientific
Data Sets. In 2015 IEEE Big Data, pages 371-380, Oct 2015.

E. Friedman, P. Pawlowski, and J. Cieslewicz. SQL/MapReduce: A Practical
Approach to Self-describing, Polymorphic, and Parallelizable User-defined Func-
tions. Proc. VLDB Endow., 2(2):1402-1413, Aug. 2009.

Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson, O. O’Malley, J. Pandey,
Y. Yuan, R. Lee, and X. Zhang. Major Technical Advancements in Apache Hive.
In SIGMOD 14, 2014.

L. Jiang, H. Kawashima, and O. Tatebe. Efficient Window Aggregate Method on
Array Database System. Journal of Information Processing, 24(6):867-877, 2016.
M. Kersten, Y. Zhang, M. Ivanova, and N. Nes. Sciql, a query language for science
applications. In AD ’11, 2011.

D. E. Keyes, Y. Saad, and D. G. Truhlar, editors. Doman-Based Parallelism and
Problem Decomposition Methods in Computational Science and Engineering. SIAM,
Philadelphia, PA, 1995.

J. Liu, E. Racah, Q. Koziol, and et al. H5Spark: Bridging the I/O Gap between
Spark and Scientific Data Formats on HPC Systems. In Cray User Group, 2016.
A. P. Marathe and K. Salem. A Language for Manipulating Arrays. In VLDB *97.
V. Markl. Breaking the Chains: On Declarative Data Analysis and Data Indepen-
dence in the Big Data Era. Proc. VLDB Endow., 7(13):1730-1733, Aug. 2014.

N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka. Physis: An implicitly parallel
programming model for stencil computations on large-scale gpu-accelerated
supercomputers. In SC ’11, pages 11:1-11:12, New York, NY, USA, 2011. ACM.
B. Momjian. PostgreSQL: Introduction and Concepts. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

M. A. Onabid. Solving Three-Dimensional (3D) Laplace Equations by Successive
Over-Relaxation Method. AJMCSR, 5(13), 2012.

Y. Peng et al. The design of the variable sampling interval generalized likelihood
ratio chart for monitoring the process mean. Qual. Reliab. Engng. Int, 31(2), 2015.
M. Raasveldt. Vectorized UDFs in Column-Stores (Master Thesis), 2015.

O. Riibel, A. Greiner, and et al. OpenMSI: A High-Performance Web-Based
Platform for Mass Spectrometry Imaging. Analytical Chemistry, 2013.

F.Rusu and Y. Cheng. A Survey on Array Storage, Query Languages, and Systems.
CoRR, abs/1302.0103, 2013.

A. Shoshani and D. Rotem, editors. Scientific Data Management: Challenges,
Technology, and Deployment. Chapman & Hall/CRC Press, 2010.

E. Soroush, M. Balazinska, and D. Wang. ArrayStore: A Storage Manager for
Complex Parallel Array Processing. In SIGMOD’2011. ACM, 2011.

H. Tang, S. Byna, S. Harenberg, et al. Usage pattern-driven dynamic data layout
reorganization. In CCGrid’2016, pages 356-365, May 2016.

The HDF Group. HDF5 User Guide, 2010.

Y. Wang, W. Jiang, and G. Agrawal. SciMATE: A Novel MapReduce-Like Frame-
work for Multiple Scientific Data Formats. In CCGrid’2012, pages 443-450, 2012.
Y. Wang, A. Nandi, and G. Agrawal. SAGA: Array Storage As a DB with Support
for Structural Aggregations. In SSDBM 14, New York, NY, USA, 2014. ACM.
M. Widenius and D. Axmark. MySQL Reference Manual. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2002.

W. Zhao, F. Rusu, B. Dong, and K. Wu. Similarity Join over Array Data. In
SIGMOD 2016.

P. C. Zikopoulos and R. B. Melnyk. DB2: The Complete Reference. McGraw-Hill,
Inc., New York, NY, USA, 2001.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Motivating examples
	2.2 Research challenges

	3 ArrayUDF Approach
	3.1 Stencil design considerations
	3.2 Array design considerations
	3.3 Analytical model for ArrayUDF

	4 Performance Evaluation
	4.1 Synthetic data and Poisson equation solver
	4.2 ArrayUDF for real scientific data analysis

	5 Related Work
	6 Conclusions and Future Work
	References

